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Stochastic ionization through noble tori: Renormalization results
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We find that chaos in the stochastic ionization problem develops through the breakup of a sequence of noble
tori. In addition to being very accurate, our method of choice, the renormalization map, is ideally suited for
analyzing properties at criticality. Our computations of chaos thresholds agree closely with the widely used
empirical Chirikov criterion.
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The multiphoton ionization of hydrogen in a strong mi-  Renormalization method'he renormalization method is
crowave field 1] revolutionized traditional notions about the based on the construction of successive canonical transfor-
physics of highly excited atoms. Its interpretation remained anations[11,13,14. In its most recent version, it acts on the
puzzle until its stochastic, diffusional nature was uncoveredollowing family of Hamiltonians with two degrees of free-
through the then-new theory of chaj@, thereby making it dom written in actions A=(A;,A;) and angles ¢
the most important testing ground for quantal manifestations= (¢1,¢2):
of classical chaoE3]. The onset of chaos in that problem has
been the focus of intensive research and is generally believed
to be induced by the breakup of invariant tpti, which act ,
as barriers in phase space preventing the diffusion of trajec- =0 A+ 2 Vi (Q-Ake, 1)
tories for Hamiltonian systems with two degrees of freedom. ’fng

Over the last two decades, different methods to estimate
breakup thresholds of invariant tori have been developed andhere w=(w,—1) is the frequency of the invariant torus,
applied to various physical models with two effective de-and€=(1,«) is some other vector. Two steps are involved
grees of freedom: Chirikov’s resonance overlap criteflslp ~ [20]: an elimination of the nonresonant modesof the
its empirical “2/3-rule” version [6], and Escande-Doveil Hamiltonian(the modes which do not involve small denomi-
renormalizatior{ 7]. These methods provide merely approxi- Nator problemp and a rescaling of phase spasift of the
mate valuesias compared to direct numerical integrajion 'esonances, rescaling in time and in the actiombis trans-
even though Escande-Doveil renormalization is known tdormation reduces to a mafR of Fourier coefficients
give very accurate values in some concrete examples. Syég"-“,;{Vﬁ_,u}):R(w*“?{Vk,v})- o )
tematic methods are now available to obtain very accurate 1€ main conjecture of the renormalization approach is
values, such as, e.g., Greene’s residue critdi@nLaskar’s tha;t if the torus exists _for a given Ham_lltonldth the iterates
frequency map analysi9,10], or renormalization analysis ’~ H Of the renormalization map acting dt converge to
[11-14. There is numerical evidence that these independerﬁOme integrable HamlltonlaHO_. This conjecture_: IS sup-
and systematic methods give the same values for the cha ried by analytical re_sults in the perturbative regime
thresholdg12,14,19. However, renormalization has an ad- 0,21, and b.y numerlqal result$15,14]|. I_:(?r a one-
ditional advantage: By focusing on specific tori, it leads toparameter family of HamiltoniangH}, the critical ampli-

tude of the perturbatiof .(w) is determined by the follow-
very accurate thresholds, and allows one to analyze the props L
. o o g conditions:
erties at criticality. Indeed, the renormalization map can be

likened to a phase-space microscope by which the system

H(A @)= w-A+V(Q-A @)

can be studied with larger and larger magnification. R"Hg — HO(A)=¢0-A+%(Q'A)2 for F<F (),
In this paper, we find the transition to chaos in the hydro- n—oo
gen atom driven by circularly polarized microwaves using 2
renormalization. This problem has emerged as a paradigm
for a number of issues in multidimensional nonlinear dynam- R"Hg — ©  for F>F (o). (©)

n—oo

ics (see Ref[16] and references therginOur results reveal
that the onset of chaos in the microwave problem develops

through a sequence of “noble” tori, i.e., tori with frequency strong microwave field of amplitud€ and frequencyt)

eqLlilxﬁlr?::n:gr?eﬂ?gIgﬁgo??heuresﬁw\élgd_s 1o)k§t2a.ine d by the renorc_ircularly polarized in the orbital plane. In action-angle vari-
R N : y ~ables, the classical Hamiltonian is reduced to the following
malization are in very good agreement with the 2/3-rule cri-

terion [17-19, and better than the ones obtained by the

Model We consider a hydrogen atom interacting with a

Hamiltonian with two degrees of freedof8]:

Escande-Doveil renormalizatidd9]. In this model, Chirik- 1 +oo

OV's criterion can be used to determine very accurate criticaly(j | g, y)=— — - QL+F >, V,(J,L)cogné+y),
thresholds of ionizatiofaccurate to 5%for most values of 2 n=—o

the parametefeccentricity of the initial orbit 4
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where 7

3e )
Vo(dL)=— 53
5_

J1-¢€?
e

1
Va(JL)=— Jh(ne)+ Jn(ne)J?,  for n#0,

where 7, is thenth Bessel function of the first kind and,

is its derivative. The angleg and ¢ are conjugate to the ; P 1
principal actionJ and to the angular momentuh) respec- o §
tively. The eccentricitye of the initial orbit is given bye

=(1-L?/J?*2 Hamiltonian(4) can be rescaled in order to 92 03 04 05 06 07 08 09
eliminate the dependence on the frequency of the microwave ®
field. We rescale time by a factét [we divide Hamiltonian FIG. 1. Critical functionF.(w) for w €[0,1] for Hamiltonian

(4) by Q]. We rescale the action and L by a factor\  (5) with e=0.45.
=0, i.e., we replaced(J,L,6,4) by NH(I/N,L/N,6,4).
We notice that this rescaling does not modéfd,L). The  ational values of the frequendgince all tori with rational

resulting Hamiltonian becomes frequency are broken as soon as the field is turnedaom it
1 +oo is discontinuous on a dense set. This figure shows that there
H=———L+F" > V,(J,L)cogné+y), is no invariant torus between the resonances 1:1 and 4:1 for
232 = Fc>max,.a,1]F (w;€=0.45)~0.0069. The most stable

region is located arouna@~0.723.

Figure 2 shows the critical thresholds between two
T _ _ B primary resonances MaX1/2,11F c(@,€) and
qu the unpelrturbe.d Hamiltonig#), i.e., with F=0, we MaX, . (312F «(@,€) as a function of the parameterfor
cpn5|der a motion with K_epler frequenczye[—_l,l] _(the corotating @>0) and for counterrotating «{<<0) orbits.
high-scaled frequenpy reg!mén phase space, th,'s trajectory g figure is analogous to Fig. 3 of Rdfl9]. In a broad
evolves on a two-dimensional torus. df is irrational, the 506 of values ok (e<[0.2,1]) the heuristic 2/3-rule cri-
trajectory fills the torus densely. This invariant torus is 10-¢qion gives very accurate resuliaccurate to 59by com-

— . —1/3 [ _ 1 2/3 H . . . . . .
cated al=w "~ andL=—Ey—;w"" wherek, is the total  p41ison with our renormalization results for corotating orbits.
energy of the systentin the rotating framp For conve-  The yajues are even better than the ones computed by
nience, we shift the actiod such that the torus is located at gg-ande-Doveil renormalizatiga9]. However, for very low
J=0, and we expand the resulting Hamiltonian in Taylor gccentricity, there is a large gap between both results which
series in the actiod. Furthermore, we rescale the actiahs | \akes the 2/3-rule inapplicable in this range of parameter

whereF’'=FQ %3 s the rescaled amplitude of the field. In
what follows, we assume th&=1.

andL by a factorh = —3w*®, making Hamiltoniar(4) For this case, Escande-Doveil renormalization is a better cri-
+o 1 terion for the determination of the thresholds. dgends to

He=wl—L+ >, k F( — @ 43y2 zero, the discrepancy is even bigger. For instance, for the

k=2 6(3w)*? 3 overlap between 1:1 and 2:1, the 2/3-rule criterion predicts a

o finite value of the threshold &=0 whereas Hamiltonia(b)

+2w_1/3J—3w2/3) > Vy(e)cogno+y), (5

0.05

whereV/n(e)=Vn(1,\/1—e2). We note that the rescaling co- .04k
efficient\ has been chosen such that the quadratic part of the
Hamiltonian isJ?/2. The resulting Hamiltonian conforms to
Eqg. (1) with «=0 and with coordinate®A=(J,L) and ¢ o.03r
=(6,4). =

In what follows, we considee (the eccentricity of the 0.02}
initial orbit) as a parameter of the system. For 1, the
resulting model is a one-dimensional hydrogen atom in a 0.01}

linearly polarized microwave fieli3]. By varyinge, we ob-
tain a wide variety of models where we can compare renor-

malization and empirical rules. 0 02 04 056 08 1
Breakup thresholds of invariant torFor a given eccen- €
tricity e, we compute the critical functioR (w;e) using the FIG. 2. Critical thresholdF . between(a) resonances 1:1 and 2:1

renormalization _methOEEqS-(z),(3)]- Figure 1 shows a typi- and(b) resonances 2:1 and 3:1 for corotatira) ( (b) and counter-
cal critical functionw—F(w;e) for e=0.45 and for coro- rotating (@)’, (b)’ orbits. The continuous curves are obtained by
tating orbits @>0). The critical function vanishes at all renormalization and dashed curves by the 2/3-rule criterion.
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FIG. 3. Critical thresholdF. between various primary reso- e
nancesm:1 and m+1:1 for m=1,...,40from left to right, ob- ] )
tained by the 2/3-rule criterion for corotating orbitsontinuous FIG. 4. Valuew,,s; of the frequency of the last invariant torus
curves and counterrotating orbitslashed curves for Hamiltonian (5) as a function of the parameter (a) between

resonances 1:1 and 2:1, atlgj between resonances 2:1 and 3:1.

is integrable in that case and the critical function is expected

to go to infinity ate=0. o _are the ones which ionize, we expect the behavior of ioniza-
For counterrotating orbits, the 2/3-rule criterion overesti-tion curves for circularly polarized microwaves to be similar

mates the critical couplings even though it gives fairly accu+g the ones for linearly polarized ones. This is consistent with
rate results(less than 10% foree[0.8,1]). The resulting experimentsFig. 1 of Ref.[22)).

Cr'.t'cal tﬁurvEe IS b((jelov[\)/ Wh."i‘t has beel_n otptalneghm nga?g] Progress to chaos through noble tofihe renormalization
:ﬁ?garoindsggg} e-LDovell renormaiization with a ISCreF)'map allows us to determine accurately the frequency of the
Y o last invariant torus to breakup. The conventional wisdom is

Our results confirm that the orbits with medium eccentric-that the last invariant torus surviving with increasing the am-
ity can diffuse more easily between the first primary reso- 9 g

nances 1=1,2,3)[19]. However, in order to ionize, the or- plitude of the perturbation is the one with frequency equal to

bits must diffuse throughout phase space or at least betwedf€ golden rr'leany.:(.\/g—.l)/z. The example we study

a large number of primary resonanes(in experiments and shows that this belief is mistaken. Figure 4 shows the value
numerical simulationf22], n%~40). Since the 2/3-rule gives of the frequency of the last invariant torus betweer_l reso-
very accurate results in a broad range of parametare nances 1:1 and 2:1, and between 2:1 and(fd corotating

compute the critical thresholds between resonantasand ~ &nd counterrotating orbitsas a function of the parameter
m+1:1 for m=1 nd with n%=40. for medium and V've have identified the frequency of these tdoy accurate
: ,...nd =140,

large eccentricities. In Fig. 3, we have plotted the differentcOmputation Of_ critical couplings in the neighborhood of
critical  curves e—maX,cyms 1.1mFe(@;€) for m these freq_uenmésln the range of the parqmetgrand for .
—1,... nd for corotating and couhterrotating orbits. It ap- these regions of phase space, each last invariant torus is a

pears that there is a very broad region of the parameter "OPIe one in the sense that its frequeneys equivalent 20
where an orbit cannot diffuse from the resonance 1:1 tdhe golden meary, i.e., there exist integersa(b,c,d) e Z
nd:1. In fact, only in the regioree[0.9,1] (with F>0.015 Such thatad—bc=x1 and w=(ay+b)/(cy+d) (or
for corotating orbits, or withF>0.05 for counterrotating equivalently, the tail of the continued fraction expansion of
ones, the orbits can ionize. In other terms, only the high- @ is & sequence of oneFor example, foe=0.45, the last
eccentricity orbits can ionize in this classical mo¢®l This  invariant torus is expected to bey{ 1)/(2y+2)~0.7236
observation reinforces the importance of core collisions forsee Fig. 1 For the region of high eccentricitigahich ion-
the ionization processl6]. ize more easily the expected frequency for the last invariant
A more commonly used function is the scaled functiontorus is w=(2y+1)/(3y+2)~0.7835. The observation
Fo(w)=Fc(w)o 3 For the linearly polarized casee( that the last invariant torus is noble has also been checked for
=1), experiments[23] and numerical computationg24] the counterrotating case. Whether or not this observation
show that forF y=Fn*>0.02(whenn is the principal quan- holds for a generic Hamiltonian remains an open question
tum numbey there is ionization fof),=1/w (the scaled fre- [25].
quency close to one. Here, we find agreement with this Conclusion Using the renormalization method, we find
value: for F,>0.022, there is no invariant curve in phase that the empirical 2/3-rule Chirikov criterion is surprisingly
space and diffusion can occur. For the circularly polarizedaccurate for the onset of chaos in the stochastic ionization
case e#1), the conclusions are less clear. However sinceproblem. The model studied in this paper, the hydrogen atom
there is a broad stable regiae[0,0.8], we expect the cir- driven by strong microwaves, shows how renormalization
cularly polarized driven atoms to ionize less easily than theand empirical rules can be used together in order to obtain
linearly driven ones. Since the orbits of high eccentricitiesvery accurate information on the stability of the system.
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