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Stochastic ionization through noble tori: Renormalization results
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We find that chaos in the stochastic ionization problem develops through the breakup of a sequence of noble
tori. In addition to being very accurate, our method of choice, the renormalization map, is ideally suited for
analyzing properties at criticality. Our computations of chaos thresholds agree closely with the widely used
empirical Chirikov criterion.

DOI: 10.1103/PhysRevE.65.026211 PACS number~s!: 05.45.Ac, 32.80.Rm, 05.10.Cc
i-
e
d
re

on
as
v

je
m
a
a
e

l
i-
n
t

Sy
ra

e
ha
d-
to
ro
b
te

ro
ng
ig
m
l
op
y

no
ri
h

ic

s
for-
e
-

,
ed

i-

is

e

a

ri-
ing
The multiphoton ionization of hydrogen in a strong m
crowave field@1# revolutionized traditional notions about th
physics of highly excited atoms. Its interpretation remaine
puzzle until its stochastic, diffusional nature was uncove
through the then-new theory of chaos@2#, thereby making it
the most important testing ground for quantal manifestati
of classical chaos@3#. The onset of chaos in that problem h
been the focus of intensive research and is generally belie
to be induced by the breakup of invariant tori@4#, which act
as barriers in phase space preventing the diffusion of tra
tories for Hamiltonian systems with two degrees of freedo

Over the last two decades, different methods to estim
breakup thresholds of invariant tori have been developed
applied to various physical models with two effective d
grees of freedom: Chirikov’s resonance overlap criterion@5#,
its empirical ‘‘2/3-rule’’ version @6#, and Escande-Dovei
renormalization@7#. These methods provide merely approx
mate values~as compared to direct numerical integratio!
even though Escande-Doveil renormalization is known
give very accurate values in some concrete examples.
tematic methods are now available to obtain very accu
values, such as, e.g., Greene’s residue criterion@8#, Laskar’s
frequency map analysis@9,10#, or renormalization analysis
@11–14#. There is numerical evidence that these independ
and systematic methods give the same values for the c
thresholds@12,14,15#. However, renormalization has an a
ditional advantage: By focusing on specific tori, it leads
very accurate thresholds, and allows one to analyze the p
erties at criticality. Indeed, the renormalization map can
likened to a phase-space microscope by which the sys
can be studied with larger and larger magnification.

In this paper, we find the transition to chaos in the hyd
gen atom driven by circularly polarized microwaves usi
renormalization. This problem has emerged as a parad
for a number of issues in multidimensional nonlinear dyna
ics ~see Ref.@16# and references therein!. Our results revea
that the onset of chaos in the microwave problem devel
through a sequence of ‘‘noble’’ tori, i.e., tori with frequenc
equivalent to the golden meang5(A521)/2.

Furthermore, the chaos thresholds obtained by the re
malization are in very good agreement with the 2/3-rule c
terion @17–19#, and better than the ones obtained by t
Escande-Doveil renormalization@19#. In this model, Chirik-
ov’s criterion can be used to determine very accurate crit
thresholds of ionization~accurate to 5%! for most values of
the parameter~eccentricity of the initial orbit!.
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Renormalization method. The renormalization method i
based on the construction of successive canonical trans
mations@11,13,14#. In its most recent version, it acts on th
following family of Hamiltonians with two degrees of free
dom written in actions A5(A1 ,A2) and angles w
5(w1 ,w2):

H~A,w!5v•A1V~V•A,w!

5v•A1 (
nPZ2

kPN

Vk,n~V•A!kei n•w, ~1!

where v5(v,21) is the frequency of the invariant torus
andV5(1,a) is some other vector. Two steps are involv
@20#: an elimination of the nonresonant modesn of the
Hamiltonian~the modes which do not involve small denom
nator problems!, and a rescaling of phase space~shift of the
resonances, rescaling in time and in the actions!. This trans-
formation reduces to a mapR of Fourier coefficients
(v8,a8;$Vk,n8 %)5R(v,a;$Vk,n%).

The main conjecture of the renormalization approach
that if the torus exists for a given HamiltonianH, the iterates
R nH of the renormalization map acting onH converge to
some integrable HamiltonianH0. This conjecture is sup-
ported by analytical results in the perturbative regim
@20,21#, and by numerical results@15,14#. For a one-
parameter family of Hamiltonians$HF%, the critical ampli-
tude of the perturbationFc(v) is determined by the follow-
ing conditions:

R nHF →
n→`

H0~A!5v•A1
1

2
~V•A!2 for F,Fc~v!,

~2!

R nHF →
n→`

` for F.Fc~v!. ~3!

Model. We consider a hydrogen atom interacting with
strong microwave field of amplitudeF and frequencyV,
circularly polarized in the orbital plane. In action-angle va
ables, the classical Hamiltonian is reduced to the follow
Hamiltonian with two degrees of freedom@18#:

H~J,L,u,c!52
1

2J2
2VL1F (

n52`

1`

Vn~J,L !cos~nu1c!,

~4!
©2002 The American Physical Society11-1
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where

V0~J,L !52
3e

2
J2,

Vn~J,L !5
1

n FJn8~ne!1
A12e2

e
Jn~ne!GJ2, for nÞ0,

whereJn is thenth Bessel function of the first kind andJn8
is its derivative. The anglesu and c are conjugate to the
principal actionJ and to the angular momentumL, respec-
tively. The eccentricitye of the initial orbit is given bye
5(12L2/J2)1/2. Hamiltonian~4! can be rescaled in order t
eliminate the dependence on the frequency of the microw
field. We rescale time by a factorV @we divide Hamiltonian
~4! by V#. We rescale the actionsJ and L by a factorl
5V1/3, i.e., we replaceH(J,L,u,c) by lH(J/l,L/l,u,c).
We notice that this rescaling does not modifye(J,L). The
resulting Hamiltonian becomes

H52
1

2J2
2L1F8 (

n52`

1`

Vn~J,L !cos~nu1c!,

whereF85FV24/3 is the rescaled amplitude of the field. I
what follows, we assume thatV51.

For the unperturbed Hamiltonian~4!, i.e., with F50, we
consider a motion with Kepler frequencyvP@21,1# ~the
high-scaled frequency regime!. In phase space, this trajecto
evolves on a two-dimensional torus. Ifv is irrational, the
trajectory fills the torus densely. This invariant torus is
cated atJ5v21/3 andL52E02 1

2 v2/3, whereE0 is the total
energy of the system~in the rotating frame!. For conve-
nience, we shift the actionJ such that the torus is located
J50, and we expand the resulting Hamiltonian in Tay
series in the actionJ. Furthermore, we rescale the actionsJ
andL by a factorl523v4/3, making Hamiltonian~4!

HF5vJ2L1 (
k52

1`
k11

6~3v!k22
Jk1FS 2

1

3
v24/3J2

12v21/3J23v2/3D (
n52`

1`

Ṽn~e!cos~nu1c!, ~5!

whereṼn(e)5Vn(1,A12e2). We note that the rescaling co
efficientl has been chosen such that the quadratic part of
Hamiltonian isJ2/2. The resulting Hamiltonian conforms t
Eq. ~1! with a50 and with coordinatesA5(J,L) and w
5(u,c).

In what follows, we considere ~the eccentricity of the
initial orbit! as a parameter of the system. Fore51, the
resulting model is a one-dimensional hydrogen atom in
linearly polarized microwave field@3#. By varyinge, we ob-
tain a wide variety of models where we can compare ren
malization and empirical rules.

Breakup thresholds of invariant tori. For a given eccen-
tricity e, we compute the critical functionFc(v;e) using the
renormalization method@Eqs.~2!,~3!#. Figure 1 shows a typi-
cal critical functionv°Fc(v;e) for e50.45 and for coro-
tating orbits (v.0). The critical function vanishes at a
02621
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rational values of the frequency~since all tori with rational
frequency are broken as soon as the field is turned on!, and it
is discontinuous on a dense set. This figure shows that t
is no invariant torus between the resonances 1:1 and 4:1
Fc.maxvP[1/4,1]Fc(v;e50.45)'0.0069. The most stable
region is located aroundv'0.723.

Figure 2 shows the critical thresholds between t
primary resonances maxvP[1/2,1]Fc(v,e) and
maxvP[1/3,1/2]Fc(v,e) as a function of the parametere for
corotating (v.0) and for counterrotating (v,0) orbits.
This figure is analogous to Fig. 3 of Ref.@19#. In a broad
range of values ofe (eP@0.2,1#) the heuristic 2/3-rule cri-
terion gives very accurate results~accurate to 5%! by com-
parison with our renormalization results for corotating orbi
The values are even better than the ones computed
Escande-Doveil renormalization@19#. However, for very low
eccentricity, there is a large gap between both results wh
makes the 2/3-rule inapplicable in this range of parametee.
For this case, Escande-Doveil renormalization is a better
terion for the determination of the thresholds. Ase tends to
zero, the discrepancy is even bigger. For instance, for
overlap between 1:1 and 2:1, the 2/3-rule criterion predic
finite value of the threshold ate50 whereas Hamiltonian~5!

FIG. 1. Critical functionFc(v) for vP@0,1# for Hamiltonian
~5! with e50.45.

FIG. 2. Critical thresholdFc between~a! resonances 1:1 and 2:
and~b! resonances 2:1 and 3:1 for corotating (a), (b) and counter-
rotating (a)8, (b)8 orbits. The continuous curves are obtained
renormalization and dashed curves by the 2/3-rule criterion.
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is integrable in that case and the critical function is expec
to go to infinity ate50.

For counterrotating orbits, the 2/3-rule criterion overes
mates the critical couplings even though it gives fairly ac
rate results~less than 10% foreP@0.8,1#). The resulting
critical curve is below what has been obtained in Ref.@19#
using the Escande-Doveil renormalization with a discr
ancy around 30%.

Our results confirm that the orbits with medium eccentr
ity can diffuse more easily between the first primary re
nances (n51,2,3) @19#. However, in order to ionize, the or
bits must diffuse throughout phase space or at least betw
a large number of primary resonancesnc

q ~in experiments and
numerical simulations@22#, nc

q'40). Since the 2/3-rule give
very accurate results in a broad range of parametere, we
compute the critical thresholds between resonancesm:1 and
m11:1 for m51, . . . ,nc

q with nc
q540, for medium and

large eccentricities. In Fig. 3, we have plotted the differe
critical curves e°maxvP[1/(m11),1/m]Fc(v;e) for m
51, . . . ,nc

q for corotating and counterrotating orbits. It a
pears that there is a very broad region of the paramete
where an orbit cannot diffuse from the resonance 1:1
nc

q :1. In fact, only in the regioneP@0.9,1# ~with F.0.015
for corotating orbits, or withF.0.05 for counterrotating
ones!, the orbits can ionize. In other terms, only the hig
eccentricity orbits can ionize in this classical model~5!. This
observation reinforces the importance of core collisions
the ionization process@16#.

A more commonly used function is the scaled functi
F0(v)5Fc(v)v24/3. For the linearly polarized case (e
51), experiments@23# and numerical computations@24#
show that forF05Fcn

4.0.02~whenn is the principal quan-
tum number! there is ionization forV051/v ~the scaled fre-
quency! close to one. Here, we find agreement with th
value: for F0.0.022, there is no invariant curve in pha
space and diffusion can occur. For the circularly polariz
case (eÞ1), the conclusions are less clear. However sin
there is a broad stable regioneP@0,0.8#, we expect the cir-
cularly polarized driven atoms to ionize less easily than
linearly driven ones. Since the orbits of high eccentricit

FIG. 3. Critical thresholdFc between various primary reso
nancesm:1 and m11:1 for m51, . . . ,40 from left to right, ob-
tained by the 2/3-rule criterion for corotating orbits~continuous
curves! and counterrotating orbits~dashed curves!.
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are the ones which ionize, we expect the behavior of ioni
tion curves for circularly polarized microwaves to be simil
to the ones for linearly polarized ones. This is consistent w
experiments~Fig. 1 of Ref.@22#!.

Progress to chaos through noble tori. The renormalization
map allows us to determine accurately the frequency of
last invariant torus to breakup. The conventional wisdom
that the last invariant torus surviving with increasing the a
plitude of the perturbation is the one with frequency equa
the golden meang5(A521)/2. The example we study
shows that this belief is mistaken. Figure 4 shows the va
of the frequency of the last invariant torus between re
nances 1:1 and 2:1, and between 2:1 and 3:1~for corotating
and counterrotating orbits!, as a function of the parametere.
We have identified the frequency of these tori~by accurate
computation of critical couplings in the neighborhood
these frequencies!. In the range of the parametere and for
these regions of phase space, each last invariant torus
noble one in the sense that its frequencyv is equivalent to
the golden meang, i.e., there exist integers (a,b,c,d)PZ4

such that ad2bc561 and v5(ag1b)/(cg1d) ~or
equivalently, the tail of the continued fraction expansion
v is a sequence of one!. For example, fore50.45, the last
invariant torus is expected to be (g11)/(2g12)'0.7236
~see Fig. 1!. For the region of high eccentricities~which ion-
ize more easily!, the expected frequency for the last invaria
torus is v5(2g11)/(3g12)'0.7835. The observation
that the last invariant torus is noble has also been checked
the counterrotating case. Whether or not this observa
holds for a generic Hamiltonian remains an open ques
@25#.

Conclusion. Using the renormalization method, we fin
that the empirical 2/3-rule Chirikov criterion is surprising
accurate for the onset of chaos in the stochastic ioniza
problem. The model studied in this paper, the hydrogen a
driven by strong microwaves, shows how renormalizat
and empirical rules can be used together in order to ob
very accurate information on the stability of the system.

FIG. 4. Valuev last of the frequency of the last invariant toru
for Hamiltonian~5! as a function of the parametere: ~a! between
resonances 1:1 and 2:1, and~b! between resonances 2:1 and 3:1
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